M1. (a) Water or $\underline{H}_{2} \mathrm{O}$ or molecules (in ice) are held further apart
(than in liquid water)/(more) space/gaps/holes in structure/Water or $\underline{H}_{2} \underline{\mathrm{O}}$ or molecules (in ice) are more spread out

Allow water (liquid) is more compact/less space/gaps/holes
$C E$ if holes filled with air, O_{2} etc
CE if macromolecule
CE if atoms further apart (since ambiguous)
Ignore spaces filled with $\mathrm{H}_{2} \mathrm{O}$
Ignore reference to H bonds
Allow better tessellation in liquid water
(b) (i) Hydrogen bonding

Allow H bonds
Do not allow 'hydrogen' only but mark on
(ii) Van der Waals'/VdW

Allow London forces, dispersion forces, temporary induced dipole forces
(iii) Hydrogen bonding is stronger (than van der Waals forces)/IMF in ice stronger (than IMF in methane)/H bonds take more energy to break

Not H Bonds are strong (needs comparison)
If (b)(i) OR (ii) is incorrect, cannot award (b)(iii)
If (b)(i) and/or (ii) is blank, can score (b)(iii)
(c) (i) Structure showing 3 bonds to H and 1 lone pair
(trigonal) pyramid(al)/(distorted) tetrahedral
do not insist on the + sign
Allow triangular pyramid
Not square pyramid
Ignore bond angles in structure
M2 independent of M1
Page 2
(ii) 107°

Allow range 106-108
Ignore ${ }^{\circ}(\mathrm{C})$
(iii) $\mathrm{NH}_{3} /$ ammonia

Contradictions (eg NH_{4} ammonia) $\mathrm{CE}=0$
(d) 3

Allow three/III/3 lone pairs/3/p/3 lone pairs of electrons

M2. (a) (i) shared pair of electrons
Can have one electron from each atom contributes to the bond
Not both electrons from one atom
(ii) $\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3}$

Only
Ignore state symbols even if wrong
(b)

OR
Allow any structure with 4 bp
In CClF_{2}, watch for Cl in centre- it must be C
Ignore wrong bond angles
Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe.
Also they can show the lone pair for either structure by two crosses/dots or a line with two crosses/dots on it e.g.

Or a structure with 3 bp and 2 Ip
(c) Dipole - dipole

Allow van der Waals/vdw/London/dispersion/temporary dipole - induced dipole Not dipole alone
(d) (i) Coordinate/dative (covalent)

If wrong $C E=0 / 3$ but if 'covalent' or left top line blank, mark on.
(Lone) pair of electrons/both electrons (on F^{-})

$C E$ if lone pair is from B

Donated from F -fluoride or donated to the BF_{3}
 Must have the - sign on the Fie FIgnore FF
 M3 dependent on M2

(e) $\frac{238 \times 100}{438}$

For 1 mark allow 238 as numerator and 438 as denominator or correct strings
$=54.3 \%$
2 marks if correct answer to 3 sig figs.
54% or greater than 3 sig figs = 1 mark

M3. (a) (i) Covalent;
If not covalent $C E=0$.
If blank, mark on.

Shared pair of electrons (one from each atom);
Not shared electrons.
(ii) Hydrogen bonds / H bonds;

Not just hydrogen.

Van der Waals/London/dispersion forces/temporary induced dipole;
(b) Showing all the lone pairs on both molecules;

Allow showing both lone pairs on the O involved in the H-bond.

Showing the partial charges on O and H on both molecules;
Allow showing both partial charges on the O and H of the other molecule involved in the H bond.

Showing the Hydrogen bond from the lone pair on O of one molecule to the delta + on the H of the other molecule;

1
(c) (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$;

Accept multiples. Allow $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
(ii) CO is (produced which is) toxic/ poisonous/C (may be produced) which is toxic/ C is a respiratory irritant/ C (particles) exacerbate asthma/C causes global dimming/ smog;

Must relate to C or CO .
Any mention of $\mathrm{SO}_{2} \mathrm{NO}_{2}$ or other pollutants $\mathrm{CE}=0$.
(iii) More fuel needed (which costs more)/Wastes fuel/ less fuel burnt (so need more to buy more)/engine gets sooty so need to pay for engine to be cleaned/Have to fit catalytic converter;

Not just costs more.
Not engine gets sooty unless qualified.
(d) (i) (React) with $\mathrm{CaO} /$ calcium oxide/quicklime/lime;

Accept $\mathrm{CaCO}_{3} /$ calcium carbonate/limestone. Not chalk.

All the sulfur dioxide may not react with the CaO or CaCO_{3} / may not have time to react/ incomplete reaction;

Accept incomplete reaction.
(ii) Occupies a (much) smaller volume; Not easier to store or transport.

M4. (a) Hydrogen/H bonds Not just hydrogen
van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole
(b)

M1 for partial charges as indicated in diagram (correct minimum)
M2 for all four lone pairs
M3 for H bond from the Ip to the $H(\delta+)$ on the other molecule
Lone pair on hydrogen $C E=0$
OHO CE = 0
If only one molecule of water shown
$C E=0$
(c) Hydrogen bonds/IMF (in water) stronger

OR
IMF/VDW/dipole-dipole forces (in $\mathrm{H}_{2} \mathrm{~S}$) are weaker
OR

H bonding is the strongest IMF
Ignore energy references Comparison must be stated or implied
(d) Atoms/molecules get larger/more shells/more electrons/more surface area

Not heavier/greater Mr
therefore increased Van der Waals/IMF forces
Ignore references to dipole-dipole forces
(e) Dative (covalent)/coordinate

If not dative/coordinate CE $=0 / 2$
If covalent or blank read on
(Lone) pair/both electrons/two electrons on $\mathrm{O}\left(\mathrm{H}_{2}\right)$ donated (to H^{+}) OR pair/both electrons come from $\mathrm{O}\left(\mathrm{H}_{2}\right)$

Explanation of a coordinate bond specific to oxygen or water required
Not just H^{+}attracted to lone pair since that is nearer to a H bond
(f) ionic
if not ionic $C E=0$
oppositely charged ions/+ and - ions or particles
atoms or molecules loses M2 and M3
ions attract strongly OR strong/many (ionic) bonds must be broken
S - loses M2
Reference to IMF loses M2 and M3

